Type de contrat : Convention de stage
Niveau de diplôme exigé : Bac + 5 ou équivalent
Autre diplôme apprécié : Master in applied mathematics or scientific computing
Fonction : Stagiaire de la recherche
The Inria center at Université Côte d'Azur includes 42 research teams and 9 support services. The center’s staff (about 500 people) is made up of scientists of different nationalities, engineers, technicians and administrative staff. The teams are mainly located on the university campuses of Sophia Antipolis and Nice as well as Montpellier, in close collaboration with research and higher education laboratories and establishments (Université Côte d'Azur, CNRS, INRAE, INSERM ...), but also with the regional economic players.
With a presence in the fields of computational neuroscience and biology, data science and modeling, software engineering and certification, as well as collaborative robotics, the Inria Centre at Université Côte d'Azur is a major player in terms of scientific excellence through its results and collaborations at both European and international levels.
This internship project is part of a collaborative project between the Atlantis project-team from Inria Research Center at Université Côte d’Azur, Sophia Antipolis and Ansys Lumerical R&D, La Farlède.
Atlantis is a team from Inria Research Center at Université Côte d’Azur located in Sophia Antipolis. It gathers researchers in numerical mathematics and computational physics, with an interdisciplinary focus. The team has developed a specific expertise in the efficient numerical modeling of propagation of electromagnetic wave in complex media with a strong emphasis on nanoscale light-matter interactions. Through the years, the Atlantis team has developed a strong expertise in the design, analysis and development of dedicated efficient numerical methods (based on high order accurate Discontinuous Galerkin finite elements methods). More recently, the team has also acquired a know-how of numerical optimization using various techniques, and a solid experience on high performance computing practices (parallel numerical algorithms and parallelization strategies for large-scale problems). This materializes concretely through the DIOGENeS software suite that has already proven its crucial efficiency in nanophotonics. DIOGENeS will be the corner stone to numerically address the various complex scenarios in this internship project.
Photonic Integrated Circuits (PICs) are considered among the most promising approaches to ensure progress in computer technology. Their possible applications range from improving the performance and efficiency of modern AI accelerators to realizing solid state LIDAR detectors for autonomous driving. However, the design of large-scale PICs still lags the design process of electronic circuits and presents unique challenges.
The goal of our research is to improve photonic components by reducing their footprint, enhancing their performance, and improving their robustness against manufacturing variations. To do so, we develop and employ advanced simulation and optimization methods, such as inverse design and topology optimization.
This internship project aims at realizing a preliminary (and preparatory) study prior to a more ambitious project that will be undertaken in the context of a Cifre PhD thesis between Ansys R&D and Inria. The internship will take place in the Atlantis project-team from Inria Center at Université Côte d’Azur in Sophia Antipolis. The overall objective will be to develop and assess an inverse design strategy leveraging a modern global optimization algorithm. Specifically, we want to implement the global optimization of a PIC device by combining the following approaches:
As an initial use case, we will optimize a symmetric Y-branch (50:50 optical splitter). This basic and well-studied device requires a relatively low number of parameters (< 20) and is therefore well-suited for global optimization.
The individual software components mentioned above are already available in the DIOGENeS software suite developed by the Atlantis project-team. The internship focuses on the geometrical modeling and parametrization of the PIC device as well as the integration of the individual components. The results of the internship will be integrated in DIOGENeS.
Technical skills and level required :
Software development skills: Python and Fortran 2003
Relational skills: team worker (verbal communication, active listening, motivation and commitment)
Other valued appreciated: good level of spoken and written English
Traineeship grant depending on attendance hours
Attention: Les candidatures doivent être déposées en ligne sur le site Inria. Le traitement des candidatures adressées par d'autres canaux n'est pas garanti.
Sécurité défense :
Ce poste est susceptible d’être affecté dans une zone à régime restrictif (ZRR), telle que définie dans le décret n°2011-1425 relatif à la protection du potentiel scientifique et technique de la nation (PPST). L’autorisation d’accès à une zone est délivrée par le chef d’établissement, après avis ministériel favorable, tel que défini dans l’arrêté du 03 juillet 2012, relatif à la PPST. Un avis ministériel défavorable pour un poste affecté dans une ZRR aurait pour conséquence l’annulation du recrutement.
Politique de recrutement :
Dans le cadre de sa politique diversité, tous les postes Inria sont accessibles aux personnes en situation de handicap.
Inria est l’institut national de recherche dédié aux sciences et technologies du numérique. Il emploie 2600 personnes. Ses 215 équipes-projets agiles, en général communes avec des partenaires académiques, impliquent plus de 3900 scientifiques pour relever les défis du numérique, souvent à l’interface d’autres disciplines. L’institut fait appel à de nombreux talents dans plus d’une quarantaine de métiers différents. 900 personnels d’appui à la recherche et à l’innovation contribuent à faire émerger et grandir des projets scientifiques ou entrepreneuriaux qui impactent le monde. Inria travaille avec de nombreuses entreprises et a accompagné la création de plus de 200 start-up. L'institut s'efforce ainsi de répondre aux enjeux de la transformation numérique de la science, de la société et de l'économie.